

Feb 19-8:47 AM

Class QZ 14
Given $N(150,25) \begin{aligned} & \mu=150 \\ & \sigma=25 \quad n=4\end{aligned}$ \qquad
For randomly selected groups of 4 find

1) $\mu_{\bar{x}}=\mu_{=}=150$ 2) $\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{7}}=\frac{25}{\sqrt{4}}=\frac{25}{2}=125$

CLT
CLT \qquad
3) $P(150<\bar{x}<175)$ Drawing, labeling, shading, II Command \qquad

Nov 29-9:27 AM

$$
\begin{aligned}
& \text { In a Survey of } 835 \text { LA residents, } 12 \dot{2} \% \text { of them were } \\
& \text { fan of LA Lasers. } n=835 \quad \hat{p}=.72 \\
& \text { 1) How many of them were fan of LA Lasers? } \\
& x=n \hat{p}=835(.72)=601.2 \rightarrow x=602 \\
& \text { if decimal } \rightarrow \text { Roundup } \\
& \text { 2) Find confidence interval for the prop. of all LA }
\end{aligned}
$$

Nov 30-7:55 AM

Minimum Sample Size needed to Construct
Confidence interval for

1) Population Proportion

$$
\begin{aligned}
& E=Z_{\alpha / 2} \cdot \sqrt{\frac{\hat{P} \bar{q}}{n}} \xrightarrow[\text { Algebra work }]{\text { with Some }} n=\hat{P} \hat{q}\left(\frac{Z_{\alpha / 2}}{E}\right) \\
& \text { if decimal } \\
& \Rightarrow \text { Roundup } \\
& \begin{array}{l}
\text { If } \hat{p} \dot{\varepsilon} . \hat{q} \text { are unknown } n=025\left(\frac{z_{\alpha / 2}}{E}\right)^{2} \\
\text { "use. } 5 \text { for each" }
\end{array}
\end{aligned}
$$

Nov 30-8:37 AM
find minimum Sample size needed to construct 96% Conf. interval for pop. proportion and error not to exceed 5% if

2) $\hat{p} \dot{\varepsilon} . \hat{q}$ unknown

$$
\begin{aligned}
n=.25\left(\frac{Z_{\alpha / 2}}{E}\right)^{2}=.25\left(\frac{2.054}{.05}\right)^{2} & =421.892 \\
& \approx 422
\end{aligned}
$$

find $\frac{n}{\text { minimum Sample Size needed if we wish }}$ To have 99%. C-level for conf. interval for Pop. Proportion and error not to exceed 4% if
\qquad

$$
\begin{aligned}
n & =\hat{p} \hat{q}\left(\frac{Z_{\alpha 12}}{E}\right)^{2}{ }_{0}^{2} \\
& =(.35)(.65)\left(\frac{2.576}{.04}\right)
\end{aligned}
$$

2) $\hat{p} \dot{\varepsilon} . \hat{q}$ are unknown
$n=.25\left(\frac{Z_{\alpha / 2}}{E}\right)^{2}=.25\left(\frac{2.576}{.04}\right)^{2}=\frac{1036.84}{\text { Roundup }} 1037$
Let's redo with C-level .95 ̇. $E=8 \%$

Nov 30-8:50 AM

Nov 30-9:09 AM

Given C-level: $97, S=8, E=2.5$
find minimum Sample size needed to construct conf. Interval for pop. mean.
$n=\left(\frac{Z_{\alpha / 2} \cdot \sigma}{E}\right)^{2}$ if σ in known $\Rightarrow n=\left(\frac{Z_{\alpha / 2} \cdot S}{\int_{\infty} E}\right)^{2}$

Redo with C-level: $94, \frac{E}{E}=4$.
$n=\left(\frac{z_{\alpha / 2} \cdot \sigma}{E}\right)^{2} \rightarrow n=\left(\frac{z_{\alpha / 2} \cdot S}{E}\right)^{2}=\left(\frac{1.881 \cdot 8}{4}\right)^{2}$

Nov 30-9:30 AM

Nov 30-9:39 AM

